Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 117(5): 1163-1173, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433374

RESUMO

PURPOSE: Rectal dose delivered during prostate radiation therapy is associated with gastrointestinal toxicity. Treatment plans are commonly optimized using rectal dose-volume constraints, often whole-rectum relative-volumes (%). We investigated whether improved rectal contouring, use of absolute-volumes (cc), or rectal truncation might improve toxicity prediction. METHODS AND MATERIALS: Patients from the CHHiP trial (receiving 74 Gy/37 fractions [Fr] vs 60 Gy/20 Fr vs 57 Gy/19 Fr) were included if radiation therapy plans were available (2350/3216 patients), plus toxicity data for relevant analyses (2170/3216 patients). Whole solid rectum relative-volumes (%) dose-volume-histogram (DVH), as submitted by treating center (original contour), was assumed standard-of-care. Three investigational rectal DVHs were generated: (1) reviewed contour per CHHiP protocol; (2) original contour absolute volumes (cc); and (3) truncated original contour (2 versions; ±0 and ±2 cm from planning target volume [PTV]). Dose levels of interest (V30, 40, 50, 60, 70, 74 Gy) in 74 Gy arm were converted by equivalent-dose-in-2 Gy-Fr (EQD2α/ß= 3 Gy) for 60 Gy/57 Gy arms. Bootstrapped logistic models predicting late toxicities (frequency G1+/G2+, bleeding G1+/G2+, proctitis G1+/G2+, sphincter control G1+, stricture/ulcer G1+) were compared by area-undercurve (AUC) between standard of care and the 3 investigational rectal definitions. RESULTS: The alternative dose/volume parameters were compared with the original relative-volume (%) DVH of the whole rectal contour, itself fitted as a weak predictor of toxicity (AUC range, 0.57-0.65 across the 8 toxicity measures). There were no significant differences in toxicity prediction for: (1) original versus reviewed rectal contours (AUCs, 0.57-0.66; P = .21-.98); (2) relative- versus absolute-volumes (AUCs, 0.56-0.63; P = .07-.91); and (3) whole-rectum versus truncation at PTV ± 2 cm (AUCs, 0.57-0.65; P = .05-.99) or PTV ± 0 cm (AUCs, 0.57-0.66; P = .27-.98). CONCLUSIONS: We used whole-rectum relative-volume DVH, submitted by the treating center, as the standard-of-care dosimetric predictor for rectal toxicity. There were no statistically significant differences in prediction performance when using central rectal contour review, with the use of absolute-volume dosimetry, or with rectal truncation relative to PTV. Whole-rectum relative-volumes were not improved upon for toxicity prediction and should remain standard-of-care.


Assuntos
Neoplasias da Próstata , Lesões por Radiação , Radioterapia Conformacional , Masculino , Humanos , Reto/diagnóstico por imagem , Radioterapia Conformacional/métodos , Lesões por Radiação/etiologia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/complicações , Dosagem Radioterapêutica
2.
Radiother Oncol ; 186: 109739, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315584

RESUMO

BACKGROUND: Patients with soft tissue sarcoma of the extremities (STSE) are left with high incidence of toxicities after Radiotherapy (RT). Understanding the normal tissue dose relationship with the development of long-term toxicities may enable better RT planning in order to reduce treatment toxicities for STSE. This systematic review of the literature aims at reporting the incidence of acute and late toxicities and identifying RT delineation guidance the normal tissues structures and dose-volume parameters for STSE. METHODS: A literature search of PUBMED-MEDLINE for studies that reported data on RT toxicity outcomes, delineation guidelines and dose-volume parameters for STSE from 2000 to 2022. Data has been tabulated and reported. RESULTS: Thirty of 586 papers were selected after exclusion criteria. External beam RT prescriptions ranged from 30 to 72 Gy. The majority of studies reported the use of Intensity Modulated RT (IMRT) (27%). Neo-adjuvant RT was used in 40%. The highest long-term toxicities were subcutaneous and lymphoedema, reported when delivering 3DCRT. IMRT had a lower incidence of toxicities. Normal tissue outlining such as weight-bearing bones, skin and subcutaneous tissue, corridor and neurovascular bundle was recommended in 6 studies. Nine studies recommended the use of dose-volume constraints, but only one recommended evidence-based dose-volume constraints. CONCLUSION: Although the literature is replete with toxicity reports, there is a lack of evidence-based guidance on normal tissue and dose-volume parameters and strategies to reduce the normal tissues irradiation when optimising RT plans for STSE are poor compared to other tumour sites.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Sarcoma , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Sarcoma/radioterapia , Sarcoma/patologia , Extremidades/patologia
3.
Int J Radiat Oncol Biol Phys ; 115(2): 327-336, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985457

RESUMO

PURPOSE: Moderately hypofractionated external beam intensity modulated radiation therapy (RT) for prostate cancer is now standard-of-care. Normal tissue toxicity responses to fraction size alteration are nonlinear: the linear-quadratic model is a widely used framework accounting for this, through the α/ß ratio. Few α/ß ratio estimates exist for human late genitourinary endpoints; here we provide estimates derived from a hypofractionation trial. METHODS AND MATERIALS: The CHHiP trial randomized 3216 men with localized prostate cancer 1:1:1 between conventionally fractionated intensity modulated RT (74 Gy/37 fractions (Fr)) and 2 moderately hypofractionated regimens (60 Gy/20 Fr and 57 Gy/19 Fr). RT plan and suitable follow-up assessment was available for 2206 men. Three prospectively assessed clinician-reported toxicity scales were amalgamated for common genitourinary endpoints: dysuria, hematuria, incontinence, reduced flow/stricture, and urine frequency. Per endpoint, only patients with baseline zero toxicity were included. Three models for endpoint grade ≥1 (G1+) and G2+ toxicity were fitted: Lyman Kutcher-Burman (LKB) without equivalent dose in 2 Gy/Fr (EQD2) correction [LKB-NoEQD2]; LKB with EQD2-correction [LKB-EQD2]; LKB-EQD2 with dose-modifying-factor (DMF) inclusion [LKB-EQD2-DMF]. DMFs were age, diabetes, hypertension, pelvic surgery, prior transurethral resection of prostate (TURP), overall treatment time and acute genitourinary toxicity (G2+). Bootstrapping generated 95% confidence intervals and unbiased performance estimates. Models were compared by likelihood ratio test. RESULTS: The LKB-EQD2 model significantly improved performance over LKB-NoEQD2 for just 3 endpoints: dysuria G1+ (α/ß = 2.0 Gy; 95% confidence interval [CI], 1.2-3.2 Gy), hematuria G1+ (α/ß = 0.9 Gy; 95% CI, 0.1-2.2 Gy) and hematuria G2+ (α/ß = 0.6 Gy; 95% CI, 0.1-1.7 Gy). For these 3 endpoints, further incorporation of 2 DMFs improved on LKB-EQD2: acute genitourinary toxicity and prior TURP (hematuria G1+ only), but α/ß ratio estimates remained stable. CONCLUSIONS: Inclusion of EQD2-correction significantly improved model fitting for dysuria and hematuria endpoints, where fitted α/ß ratio estimates were low: 0.6 to 2 Gy. This suggests therapeutic gain for clinician-reported GU toxicity, through hypofractionation, might be lower than expected by typical late α/ß ratio assumptions of 3 to 5 Gy.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Ressecção Transuretral da Próstata , Humanos , Masculino , Disuria , Hematúria/etiologia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Radioterapia de Intensidade Modulada/efeitos adversos
5.
Cancers (Basel) ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35205693

RESUMO

We present a novel classification system of the parenchymal features of radiation-induced lung damage (RILD). We developed a deep learning network to automate the delineation of five classes of parenchymal textures. We quantify the volumetric change in classes after radiotherapy in order to allow detailed, quantitative descriptions of the evolution of lung parenchyma up to 24 months after RT, and correlate these with radiotherapy dose and respiratory outcomes. Diagnostic CTs were available pre-RT, and at 3, 6, 12 and 24 months post-RT, for 46 subjects enrolled in a clinical trial of chemoradiotherapy for non-small cell lung cancer. All 230 CT scans were segmented using our network. The five parenchymal classes showed distinct temporal patterns. Moderate correlation was seen between change in tissue class volume and clinical and dosimetric parameters, e.g., the Pearson correlation coefficient was ≤0.49 between V30 and change in Class 2, and was 0.39 between change in Class 1 and decline in FVC. The effect of the local dose on tissue class revealed a strong dose-dependent relationship. Respiratory function measured by spirometry and MRC dyspnoea scores after radiotherapy correlated with the measured radiological RILD. We demonstrate the potential of using our approach to analyse and understand the morphological and functional evolution of RILD in greater detail than previously possible.

6.
Int J Radiat Oncol Biol Phys ; 111(5): 1204-1213, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34352290

RESUMO

PURPOSE: Radiation therapy to the prostate and pelvic lymph nodes (PLNRT) is part of the curative treatment of high-risk prostate cancer. Yet, the broader influence of radiation therapy on patient physiology is poorly understood. We conducted comprehensive global metabolomic profiling of urine, plasma, and stools sampled from patients undergoing PLNRT for high-risk prostate cancer. METHODS AND MATERIALS: Samples were taken from 32 patients at 6 timepoints: baseline, 2 to 3 and 4 to 5 weeks of PLNRT; and 3, 6, and 12 months after PLNRT. We characterized the global metabolome of urine and plasma using 1H nuclear magnetic resonance spectroscopy and ultraperformance liquid chromatography-mass spectrometry, and of stools with nuclear magnetic resonance. Linear mixed-effects modeling was used to investigate metabolic changes between timepoints for each biofluid and assay and determine metabolites of interest. RESULTS: Metabolites in urine, plasma and stools changed significantly after PLNRT initiation. Metabolic profiles did not return to baseline up to 1 year post-PLNRT in any biofluid. Molecules associated with cardiovascular risk were increased in plasma. Pre-PLNRT fecal butyrate levels directly associated with increasing gastrointestinal side effects, as did a sharper fall in those levels during and up to 1 year postradiation therapy, mirroring our previous results with metataxonomics. CONCLUSIONS: We showed for the first time that an overall metabolic effect is observed in patients undergoing PLNRT up to 1 year posttreatment. These metabolic changes may effect on long-term morbidity after treatment, which warrants further investigation.


Assuntos
Microbiota , Neoplasias da Próstata , Humanos , Masculino , Metaboloma , Metabolômica , Pelve , Neoplasias da Próstata/radioterapia
7.
Phys Med Biol ; 66(12)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34049304

RESUMO

For decades, dose-volume information for segmented anatomy has provided the essential data for correlating radiotherapy dosimetry with treatment-induced complications. Dose-volume information has formed the basis for modelling those associations via normal tissue complication probability (NTCP) models and for driving treatment planning. Limitations to this approach have been identified. Many studies have emerged demonstrating that the incorporation of information describing the spatial nature of the dose distribution, and potentially its correlation with anatomy, can provide more robust associations with toxicity and seed more general NTCP models. Such approaches are culminating in the application of computationally intensive processes such as machine learning and the application of neural networks. The opportunities these approaches have for individualising treatment, predicting toxicity and expanding the solution space for radiation therapy are substantial and have clearly widespread and disruptive potential. Impediments to reaching that potential include issues associated with data collection, model generalisation and validation. This review examines the role of spatial models of complication and summarises relevant published studies. Sources of data for these studies, appropriate statistical methodology frameworks for processing spatial dose information and extracting relevant features are described. Spatial complication modelling is consolidated as a pathway to guiding future developments towards effective, complication-free radiotherapy treatment.


Assuntos
Radioterapia (Especialidade) , Planejamento da Radioterapia Assistida por Computador , Modelos Estatísticos , Probabilidade , Radiometria , Radioterapia/efeitos adversos , Dosagem Radioterapêutica
8.
Int J Radiat Oncol Biol Phys ; 110(2): 596-608, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33412260

RESUMO

PURPOSE: Changes in fraction size of external beam radiation therapy exert nonlinear effects on subsequent toxicity. Commonly described by the linear-quadratic model, fraction size sensitivity of normal tissues is expressed by the α/ß ratio. We sought to study individual α/ß ratios for different late rectal effects after prostate external beam radiation therapy. METHODS AND MATERIALS: The CHHiP trial (ISRCTN97182923) randomized men with nonmetastatic prostate cancer 1:1:1 to 74 Gy/37 fractions (Fr), 60 Gy/20 Fr, or 57 Gy/19 Fr. Patients in the study had full dosimetric data and zero baseline toxicity. Toxicity scales were amalgamated to 6 bowel endpoints: bleeding, diarrhea, pain, proctitis, sphincter control, and stricture. Lyman-Kutcher-Burman models with or without equivalent dose in 2 Gy/Fr correction were log-likelihood fitted by endpoint, estimating α/ß ratios. The α/ß ratio estimate sensitivity was assessed using sequential inclusion of dose modifying factors (DMFs): age, diabetes, hypertension, inflammatory bowel or diverticular disease (IBD/diverticular), and hemorrhoids. 95% confidence intervals (CIs) were bootstrapped. Likelihood ratio testing of 632 estimator log-likelihoods compared the models. RESULTS: Late rectal α/ß ratio estimates (without DMF) ranged from bleeding (G1 + α/ß = 1.6 Gy; 95% CI, 0.9-2.5 Gy) to sphincter control (G1 + α/ß = 3.1 Gy; 95% CI, 1.4-9.1 Gy). Bowel pain modelled poorly (α/ß, 3.6 Gy; 95% CI, 0.0-840 Gy). Inclusion of IBD/diverticular disease as a DMF significantly improved fits for stool frequency G2+ (P = .00041) and proctitis G1+ (P = .00046). However, the α/ß ratios were similar in these no-DMF versus DMF models for both stool frequency G2+ (α/ß 2.7 Gy vs 2.5 Gy) and proctitis G1+ (α/ß 2.7 Gy vs 2.6 Gy). Frequency-weighted averaging of endpoint α/ß ratios produced: G1 + α/ß ratio = 2.4 Gy; G2 + α/ß ratio = 2.3 Gy. CONCLUSIONS: We estimated α/ß ratios for several common late adverse effects of rectal radiation therapy. When comparing dose-fractionation schedules, we suggest using late a rectal α/ß ratio ≤ 3 Gy.


Assuntos
Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Tolerância a Radiação , Reto/efeitos da radiação , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Canal Anal/fisiopatologia , Canal Anal/efeitos da radiação , Diarreia/complicações , Fracionamento da Dose de Radiação , Hemorragia Gastrointestinal/complicações , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Probabilidade , Proctite/complicações , Lesões por Radiação/complicações , Reto/diagnóstico por imagem , Estreitamento Uretral/complicações
9.
Front Oncol ; 10: 1174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793485

RESUMO

Purpose: Dose information from organ sub-regions has been shown to be more predictive of genitourinary toxicity than whole organ dose volume histogram information. This study aimed to identify anatomically-localized regions where 3D dose is associated with genitourinary toxicities in healthy tissues throughout the pelvic anatomy. Methods and Materials: Dose distributions for up to 656 patients of the Trans-Tasman Radiation Oncology Group 03.04 RADAR trial were deformably registered onto a single exemplar CT dataset. Voxel- based multiple comparison permutation dose difference testing, Cox regression modeling and LASSO feature selection were used to identify regions where 3D dose-increase was associated with late grade ≥ 2 genitourinary dysuria, incontinence and frequency, and late grade ≥ 1 haematuria. This was externally validated by registering dose distributions from the RT01 (up to n = 388) and CHHiP (up to n = 247) trials onto the same exemplar and repeating the voxel-based tests on each of these data sets. All three datasets were then combined, and the tests repeated. Results: Voxel-based Cox regression and multiple comparison permutation dose difference testing revealed regions where increased dose was correlated with genitourinary toxicity. Increased dose in the vicinity of the membranous and spongy urethra was associated with dysuria for all datasets. Haematuria was similarly correlated with increased dose at the membranous and spongy urethra, for the RADAR, CHHiP, and combined datasets. Some evidence was found for the association between incontinence and increased dose at the internal and external urethral sphincter for RADAR and the internal sphincter alone for the combined dataset. Incontinence was also strongly correlated with dose from posterior oblique beams. Patients with fields extending inferiorly and posteriorly to the CTV, adjacent to the membranous and spongy urethra, were found to experience increased frequency. Conclusions: Anatomically-localized dose-toxicity relationships were determined for late genitourinary symptoms in the urethra and urinary sphincters. Low-intermediate doses to the extraprostatic urethra were associated with risk of late dysuria and haematuria, while dose to the urinary sphincters was associated with incontinence.

10.
Radiother Oncol ; 150: 281-292, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32745667

RESUMO

BACKGROUND AND PURPOSE: This study aimed to identify anatomically-localised regions where planned radiotherapy dose is associated with gastrointestinal toxicities in healthy tissues throughout the pelvic anatomy. MATERIALS AND METHODS: Planned dose distributions for up to 657 patients of the Trans Tasman Radiation Oncology Group 03.04 RADAR trial were deformably registered onto a single exemplar computed tomography dataset. Voxel-based multiple comparison permutation dose difference testing, Cox regression modelling and LASSO feature selection were used to identify regions where dose-increase was associated with grade ≥2 rectal bleeding (RB) or tenesmus, according to the LENT/SOMA scale. This was externally validated by registering dose distributions from the RT01 (n = 388) and CHHiP (n = 241) trials onto the same exemplar and repeating the tests on each of these data sets, and on all three datasets combined. RESULTS: Voxel-based Cox regression and permutation dose difference testing revealed regions where increased dose was correlated with gastrointestinal toxicity. Grade ≥2 RB was associated with posteriorly extended lateral beams that manifested high doses (>55 Gy) in a small rectal volume adjacent to the clinical target volume. A correlation was found between grade ≥2 tenesmus and increased low-intermediate dose (∼25 Gy) at the posterior beam region, including the posterior rectum and perirectal fat space (PRFS). CONCLUSIONS: The serial response of the rectum with respect to RB has been demonstrated in patients with posteriorly extended lateral beams. Similarly, the parallel response of the PRFS with respect to tenesmus has been demonstrated in patients treated with the posterior beam.


Assuntos
Neoplasias da Próstata , Lesões por Radiação , Doenças Retais , Hemorragia Gastrointestinal/etiologia , Humanos , Masculino , Dosagem Radioterapêutica , Reto/diagnóstico por imagem
11.
Int J Radiat Oncol Biol Phys ; 108(5): 1304-1318, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32739320

RESUMO

PURPOSE: Reducing margins during treatment planning to decrease dose to healthy organs surrounding the prostate can risk inadequate treatment of subclinical disease. This study aimed to investigate whether lack of dose to subclinical disease is associated with increased disease progression by using high-quality prostate radiation therapy clinical trial data to identify anatomically localized regions where dose variation is associated with prostate-specific antigen progression (PSAP). METHODS AND MATERIALS: Planned dose distributions for 683 patients of the Trans-Tasman Radiation Oncology Group 03.04 Randomized Androgen Deprivation and Radiotherapy (RADAR) trial were deformably registered onto a single exemplar computed tomography data set. These were divided into high-risk and intermediate-risk subgroups for analysis. Three independent voxel-based statistical tests, using permutation testing, Cox regression modeling, and least absolute shrinkage selection operator feature selection, were applied to identify regions where dose variation was associated with PSAP. Results from the intermediate-risk RADAR subgroup were externally validated by registering dose distributions from the RT01 (n = 388) and Conventional or Hypofractionated High Dose Intensity Modulated Radiotherapy for Prostate Cancer Trial (CHHiP) (n = 253) trials onto the same exemplar and repeating the tests on each of these data sets. RESULTS: Voxel-based Cox regression revealed regions where reduced dose was correlated with increased prostate-specific androgen progression. Reduced dose in regions associated with coverage at the posterior prostate, in the immediate periphery of the posterior prostate, and in regions corresponding to the posterior oblique beams or posterior lateral beam boundary, was associated with increased PSAP for RADAR and RT01 patients, but not for CHHiP patients. Reduced dose to the seminal vesicle region was also associated with increased PSAP for RADAR intermediate-risk patients. CONCLUSIONS: Ensuring adequate dose coverage at the posterior prostate and immediately surrounding posterior region (including the seminal vesicles), where aggressive cancer spread may be occurring, may improve tumor control. It is recommended that particular care be taken when defining margins at the prostate posterior, acknowledging the trade-off between quality of life due to rectal dose and the preferences of clinicians and patients.


Assuntos
Progressão da Doença , Antígeno Prostático Específico/metabolismo , Próstata/efeitos da radiação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Conjuntos de Dados como Assunto , Humanos , Masculino , Órgãos em Risco/diagnóstico por imagem , Órgãos em Risco/efeitos da radiação , Modelos de Riscos Proporcionais , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Dosagem Radioterapêutica , Glândulas Seminais/diagnóstico por imagem , Glândulas Seminais/efeitos da radiação , Tomografia Computadorizada por Raios X
12.
Clin Transl Radiat Oncol ; 21: 77-84, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072028

RESUMO

BACKGROUND AND PURPOSE: The penile bulb (PB) dose may be critical in development of post prostate radiotherapy erectile dysfunction (ED). This study aimed to generate PB dose constraints based on dose-volume histograms (DVHs) in patients treated with prostate radiotherapy, and to identify clinical and dosimetric parameters that predict the risk of ED post prostate radiotherapy. MATERIALS AND METHODS: Penile bulb DVHs were generated for 276 patients treated within the randomised IGRT substudy of the multicentre randomised trial, CHHiP. Incidence of ED in relation to dose and randomised IGRT groups were evaluated using Wilcoxon rank sum, Chi-squared test and atlases of complication incidence. Youden index was used to find dose-volume constraints that discriminated for ED. Multivariate analysis (MVA) of effect of dosimetry, clinical and patient-related variables was performed. RESULTS: Reduced treatment margins using IGRT (IGRT-R) produced significantly reduced mean PB dose compared with standard margins (IGRT-S) (median: 25 Gy (IGRT-S) versus 11 Gy (IGRT-R); p < 0.0001). Significant difference in both mean (median: 23 Gy (ED) vs. 18 Gy (no ED); p = 0.011) and maximum (median: 59 Gy (ED) vs. 52 Gy (no ED); p = 0.018) PB doses between those with and without clinician reported ED were identified. Mean PB dose cut-point for ED was derived at around 20 Gy. On MVA, PB mean dose and age predicted for impotence. CONCLUSION: PB dose appears predictive of post-radiotherapy ED with calculated threshold mean dose of around 20 Gy, substantially lower than published recommendations. IGRT-R enables favourable PB dosimetry and can be recommended provided prostate coverage is not compromised.

13.
Int J Radiat Oncol Biol Phys ; 106(5): 928-938, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987974

RESUMO

PURPOSE: The CHHiP trial randomized 3216 men with localized prostate cancer (1:1:1) to 3 radiation therapy fractionation schedules: 74 Gy in 37 fractions over 7.4 weeks; 60 Gy in 20 fractions over 4 weeks; and 57 Gy in 19 fractions over 3.8 weeks. Literature-based dose constraints were applied with arithmetic adjustment for the hypofractionated arms. This study aimed to derive anorectal dose constraints using prospectively collected clinician-reported outcomes (CROs) and patient-reported outcomes (PROs) and to assess the added predictive value of spatial dose metrics. METHODS AND MATERIALS: A case-control study design was used; 7 CRO and 5 PRO bowel symptoms were evaluated. Cases experienced a moderate or worse symptom 1 to 5 years after-radiation therapy and did not have the symptom before radiation therapy. Controls did not experience the symptom at baseline or between 1 to 5 years after radiation therapy. The anorectum was recontoured from the anal verge to the rectosigmoid junction; dose/volume parameters were extracted. Univariate logistic regression, atlases of complication indices, and bootstrapped receiver-operating-characteristic analysis (1000 replicates, balanced outcomes) were used to derive dose constraints for the whole cohort (hypofractionated schedules were converted to 2-Gy equivalent schedules using α/ß = 3 Gy) and separate hypofractionated/conventional fractionation cohorts. Only areas under the curve with 95% confidence interval lower limits >0.5 were considered statistically significant. Any constraint derived in <95% to 99% of bootstraps was excluded. RESULTS: Statistically significant dose constraints were derived for CROs but not PROs. Intermediate to high doses were important for rectal bleeding, whereas intermediate doses were important for increased bowel frequency, fecal incontinence, and rectal pain. Spatial dose metrics did not improve prediction of CROs or PROs. A new panel of dose constraints for hypofractionated schedules to 60 Gy or 57 Gy are V20Gy <85%, V30Gy <57%, V40Gy <38%, V50Gy <22%, and V60Gy <0.01%. CONCLUSIONS: Dose constraints differed among symptoms, indicating potentially different pathogenesis of radiation-induced side effects. Derived dose constraints were stricter than those used in CHHiP and may reduce bowel symptoms after radiation therapy.


Assuntos
Fracionamento da Dose de Radiação , Medidas de Resultados Relatados pelo Paciente , Neoplasias da Próstata/radioterapia , Reto/efeitos da radiação , Humanos , Masculino , Resultado do Tratamento
14.
J Natl Cancer Inst ; 112(2): 179-190, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095341

RESUMO

BACKGROUND: A total of 10%-20% of patients develop long-term toxicity following radiotherapy for prostate cancer. Identification of common genetic variants associated with susceptibility to radiotoxicity might improve risk prediction and inform functional mechanistic studies. METHODS: We conducted an individual patient data meta-analysis of six genome-wide association studies (n = 3871) in men of European ancestry who underwent radiotherapy for prostate cancer. Radiotoxicities (increased urinary frequency, decreased urinary stream, hematuria, rectal bleeding) were graded prospectively. We used grouped relative risk models to test associations with approximately 6 million genotyped or imputed variants (time to first grade 2 or higher toxicity event). Variants with two-sided Pmeta less than 5 × 10-8 were considered statistically significant. Bayesian false discovery probability provided an additional measure of confidence. Statistically significant variants were evaluated in three Japanese cohorts (n = 962). All statistical tests were two-sided. RESULTS: Meta-analysis of the European ancestry cohorts identified three genomic signals: single nucleotide polymorphism rs17055178 with rectal bleeding (Pmeta = 6.2 × 10-10), rs10969913 with decreased urinary stream (Pmeta = 2.9 × 10-10), and rs11122573 with hematuria (Pmeta = 1.8 × 10-8). Fine-scale mapping of these three regions was used to identify another independent signal (rs147121532) associated with hematuria (Pconditional = 4.7 × 10-6). Credible causal variants at these four signals lie in gene-regulatory regions, some modulating expression of nearby genes. Previously identified variants showed consistent associations (rs17599026 with increased urinary frequency, rs7720298 with decreased urinary stream, rs1801516 with overall toxicity) in new cohorts. rs10969913 and rs17599026 had similar effects in the photon-treated Japanese cohorts. CONCLUSIONS: This study increases the understanding of the architecture of common genetic variants affecting radiotoxicity, points to novel radio-pathogenic mechanisms, and develops risk models for testing in clinical studies. Further multinational radiogenomics studies in larger cohorts are worthwhile.

15.
Radiother Oncol ; 142: 62-71, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767473

RESUMO

BACKGROUND AND PURPOSE: Image-guided radiotherapy (IGRT) improves treatment set-up accuracy and provides the opportunity to reduce target volume margins. We introduced IGRT methods using standard (IGRT-S) or reduced (IGRT-R) margins in a randomised phase 2 substudy within CHHiP trial. We present a pre-planned analysis of the impact of IGRT on dosimetry and acute/late pelvic side effects using gastrointestinal and genitourinary clinician and patient-reported outcomes (PRO) and evaluate efficacy. MATERIALS AND METHODS: CHHiP is a randomised phase 3, non-inferiority trial for men with localised prostate cancer. 3216 patients were randomly assigned to conventional (74 Gy in 2 Gy/fraction (f) daily) or moderate hypofractionation (60 or 57 Gy in 3 Gy/f daily) between October 2002 and June 2011. The IGRT substudy included a second randomisation assigning to no-IGRT, IGRT-S (standard CTV-PTV margins), or IGRT-R (reduced CTV-PTV margins). Primary substudy endpoint was late RTOG bowel and urinary toxicity at 2 years post-radiotherapy. RESULTS: Between June 2010 to July 2011, 293 men were recruited from 16 centres. Median follow-up is 56.9(IQR 54.3-60.9) months. Rectal and bladder dose-volume and surface percentages were significantly lower in IGRT-R compared to IGRT-S group; (p < 0.0001). Cumulative proportion with RTOG grade ≥ 2 toxicity reported to 2 years for bowel was 8.3(95% CI 3.2-20.7)%, 8.3(4.7-14.6)% and 5.8(2.6-12.4)% and for urinary 8.4(3.2-20.8)%, 4.6(2.1-9.9)% and 3.9(1.5-9.9)% in no IGRT, IGRT-S and IGRT-R groups respectively. In an exploratory analysis, treatment efficacy appeared similar in all three groups. CONCLUSION: Introduction of IGRT was feasible in a national randomised trial and IGRT-R produced dosimetric benefits. Overall side effect profiles were acceptable in all groups but lowest with IGRT and reduced margins. ISRCTN: 97182923.


Assuntos
Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Idoso , Idoso de 80 Anos ou mais , Marcadores Fiduciais , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Medidas de Resultados Relatados pelo Paciente , Neoplasias da Próstata/patologia , Hipofracionamento da Dose de Radiação , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/efeitos adversos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Reto/efeitos da radiação
16.
Clin Cancer Res ; 25(21): 6487-6500, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31345839

RESUMO

PURPOSE: Radiotherapy is important in managing pelvic cancers. However, radiation enteropathy may occur and can be dose limiting. The gut microbiota may contribute to the pathogenesis of radiation enteropathy. We hypothesized that the microbiome differs between patients with and without radiation enteropathy.Experimental Design: Three cohorts of patients (n = 134) were recruited. The early cohort (n = 32) was followed sequentially up to 12 months post-radiotherapy to assess early radiation enteropathy. Linear mixed models were used to assess microbiota dynamics. The late cohort (n = 87) was assessed cross-sectionally to assess late radiation enteropathy. The colonoscopy cohort compared the intestinal mucosa microenvironment in patients with radiation enteropathy (cases, n = 9) with healthy controls (controls, n = 6). Fecal samples were obtained from all cohorts. In the colonoscopy cohort, intestinal mucosa samples were taken. Metataxonomics (16S rRNA gene) and imputed metataxonomics (Piphillin) were used to characterize the microbiome. Clinician- and patient-reported outcomes were used for clinical characterization. RESULTS: In the acute cohort, we observed a trend for higher preradiotherapy diversity in patients with no self-reported symptoms (P = 0.09). Dynamically, diversity decreased less over time in patients with rising radiation enteropathy (P = 0.05). A consistent association between low bacterial diversity and late radiation enteropathy was also observed, albeit nonsignificantly. Higher counts of Clostridium IV, Roseburia, and Phascolarctobacterium significantly associated with radiation enteropathy. Homeostatic intestinal mucosa cytokines related to microbiota regulation and intestinal wall maintenance were significantly reduced in radiation enteropathy [IL7 (P = 0.05), IL12/IL23p40 (P = 0.03), IL15 (P = 0.05), and IL16 (P = 0.009)]. IL15 inversely correlated with counts of Roseburia and Propionibacterium. CONCLUSIONS: The microbiota presents opportunities to predict, prevent, or treat radiation enteropathy. We report the largest clinical study to date into associations of the microbiota with acute and late radiation enteropathy. An altered microbiota associates with early and late radiation enteropathy, with clinical implications for risk assessment, prevention, and treatment of radiation-induced side-effects.See related commentary by Lam et al., p. 6280.


Assuntos
Bactérias/genética , Trato Gastrointestinal/microbiologia , Neoplasias Pélvicas/radioterapia , Lesões por Radiação/genética , Idoso , Bactérias/classificação , Bactérias/efeitos da radiação , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos da radiação , Trato Gastrointestinal/patologia , Trato Gastrointestinal/efeitos da radiação , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Neoplasias Pélvicas/complicações , Neoplasias Pélvicas/microbiologia , Neoplasias Pélvicas/patologia , RNA Ribossômico 16S/genética , Exposição à Radiação/efeitos adversos , Lesões por Radiação/microbiologia , Lesões por Radiação/patologia
17.
Radiother Oncol ; 136: 190-196, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31015124

RESUMO

BACKGROUND: Seroma describes a collection of serous fluid within a cavity, occurring following surgery. Seroma is associated with normal tissue effects (NTE) following breast radiotherapy, as reported by clinicians and on photographs. This study investigates the association between seroma and the NTE breast appearance change collected using patient-reported outcome measures (PROMs) in IMPORT HIGH, as well as investigating the association between breast appearance change and patient/tumour/treatment factors. METHODS: Case-control methodology was used for seroma analysis within IMPORT HIGH. Cases were patients reporting moderate/marked breast appearance change and controls reported none/mild changes at year-3. One control was selected at random for each case. Seromas were graded as not visible/subtle or visible/highly visible on CT radiotherapy planning scans. Logistic regression tested associations, adjusting for patient/tumour/treatment factors. RESULTS: 1078/1149 patients consented to PROMs, of whom 836 (78%) reported whether they had 3-year breast appearance change; 231 cases and 231 controls were identified. 304/462 (66%) patients received chemotherapy. Seroma prevalence was 20% (41/202) in cases and 16% (32/205) in controls, and less frequent in patients receiving adjuvant chemotherapy [10% (24/246) compared with 29% (40/138) without]. Visible seroma was not significantly associated with breast appearance change [OR 1.38 (95%CI 0.83-2.29), p = 0.219]. Larger tumour size, haematoma, current smoking and body image concerns at baseline were independent risk factors. CONCLUSIONS: Seroma was not associated with patient-reported breast appearance change, but haematoma and smoking were significant risk factors. Lack of association may be related to lower prevalence of seroma compared with previous reports, perhaps reflecting patients receiving adjuvant chemotherapy in whom seroma resolves prior to radiotherapy.


Assuntos
Neoplasias da Mama/radioterapia , Mama/patologia , Seroma/etiologia , Neoplasias da Mama/cirurgia , Estudos de Casos e Controles , Terapia Combinada , Feminino , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Medidas de Resultados Relatados pelo Paciente , Fatores de Risco
18.
Clin Transl Radiat Oncol ; 8: 27-39, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29399642

RESUMO

Severe acute dysphagia commonly results from head and neck radiotherapy (RT). A model enabling prediction of severity of acute dysphagia for individual patients could guide clinical decision-making. Statistical associations between RT dose distributions and dysphagia could inform RT planning protocols aiming to reduce the incidence of severe dysphagia. We aimed to establish such a model and associations incorporating spatial dose metrics. Models of severe acute dysphagia were developed using pharyngeal mucosa (PM) RT dose (dose-volume and spatial dose metrics) and clinical data. Penalized logistic regression (PLR), support vector classification and random forest classification (RFC) models were generated and internally (173 patients) and externally (90 patients) validated. These were compared using area under the receiver operating characteristic curve (AUC) to assess performance. Associations between treatment features and dysphagia were explored using RFC models. The PLR model using dose-volume metrics (PLRstandard) performed as well as the more complex models and had very good discrimination (AUC = 0.82) on external validation. The features with the highest RFC importance values were the volume, length and circumference of PM receiving 1 Gy/fraction and higher. The volumes of PM receiving 1 Gy/fraction or higher should be minimized to reduce the incidence of severe acute dysphagia.

19.
Oncoscience ; 4(3-4): 27-28, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28540332
20.
Int J Radiat Oncol Biol Phys ; 96(4): 820-831, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27788955

RESUMO

PURPOSE: Current normal tissue complication probability modeling using logistic regression suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal tissue-sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce the dimensionality of the dose data could overcome this limitation. METHODS AND MATERIALS: FDA was applied to modeling of severe acute mucositis and dysphagia resulting from head and neck RT. Functional partial least squares regression (FPLS) and functional principal component analysis were used for dimensionality reduction of the dose-volume histogram data. The reduced dose data were input into functional logistic regression models (functional partial least squares-logistic regression [FPLS-LR] and functional principal component-logistic regression [FPC-LR]) along with clinical data. This approach was compared with penalized logistic regression (PLR) in terms of predictive performance and the significance of treatment covariate-response associations, assessed using bootstrapping. RESULTS: The area under the receiver operating characteristic curve for the PLR, FPC-LR, and FPLS-LR models was 0.65, 0.69, and 0.67, respectively, for mucositis (internal validation) and 0.81, 0.83, and 0.83, respectively, for dysphagia (external validation). The calibration slopes/intercepts for the PLR, FPC-LR, and FPLS-LR models were 1.6/-0.67, 0.45/0.47, and 0.40/0.49, respectively, for mucositis (internal validation) and 2.5/-0.96, 0.79/-0.04, and 0.79/0.00, respectively, for dysphagia (external validation). The bootstrapped odds ratios indicated significant associations between RT dose and severe toxicity in the mucositis and dysphagia FDA models. Cisplatin was significantly associated with severe dysphagia in the FDA models. None of the covariates was significantly associated with severe toxicity in the PLR models. Dose levels greater than approximately 1.0 Gy/fraction were most strongly associated with severe acute mucositis and dysphagia in the FDA models. CONCLUSIONS: FPLS and functional principal component analysis marginally improved predictive performance compared with PLR and provided robust dose-response associations. FDA is recommended for use in normal tissue complication probability modeling.


Assuntos
Transtornos de Deglutição/etiologia , Neoplasias de Cabeça e Pescoço/radioterapia , Modelos Estatísticos , Mucosite/etiologia , Órgãos em Risco/efeitos da radiação , Lesões por Radiação/complicações , Doença Aguda , Área Sob a Curva , Carboplatina/efeitos adversos , Cisplatino/efeitos adversos , Relação Dose-Resposta à Radiação , Humanos , Análise de Componente Principal , Curva ROC , Radiossensibilizantes/efeitos adversos , Dosagem Radioterapêutica , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA